智能工厂面临的5大难题以及应对之道

我们已经知道,边缘化的AI和IoT是加快工厂转型的关键,但是,如何催化这些技术的更快速采用并避免飞行员炼狱的陷阱又需要什么呢?

在过去的两年中,我们开展了一项针对整个行业和生态系统公司的400多名参与者的研究,他们邀请制造领导者和工人以及开发支持他们的解决方案和服务的技术人员来回答这个问题,并揭示工业4.0的基本要素。2018年,我们发布了研究的第一阶段,确定了制造业领导者和工厂工人在通往智能工厂未来的道路上共同发展时正在解决的关键问题。

我们刚刚发布了该工作的下一个阶段,即Accelerate Industrial,研究了工人将如何在制造角色中采用AI并对AI做出反应,以及什么样的策略和策略将“加速加速器”。迄今为止,这项分阶段的研究代表了制造业中正在发生的数字化转型的最全面观点。

所有第二阶段的参与者都必须在智能工厂或开发智能技术,解决方案或服务的公司中扮演第一手的角色,涵盖这四个领域中技术的开发,部署和维护的全部观点墙壁。

我们的研究发现,尽管对数字化转型的需求很大,但有83%的公司表示他们计划在未来两到三年内投资于智能工厂技术,而最有可能推动这种变化的人通常不确定关于如何前进或犹豫要冒险。那么,是什么导致这种启动失败或无法扩展?领导者应如何改变组织内部的文化观念,以获取工业物联网的收益?

受访者列举了以下五项挑战,它们有可能在未来破坏对智能解决方案的投资,以及避免试点炼狱的危险的提示:

挑战1:技术技能差距

36%的受访者认为存在“技术技能差距”,使他们无法从投资中受益。

为了成功实施新技术并维持运营,公司必须拥有一支拥有“数字灵巧性”的员工队伍-人们必须了解制造过程以及支持这些过程的数字工具。

解:

创建支持现有员工终身学习的计划,将新概念与动手机会结合起来,以在制造运营中使用它们;建立链接的模块,以便随着员工精通技能,他们会随着时间的推移发展和磨练自己的技能。

提供有关数字工具和技能的指导(被认为在今天很重要,但对未来至关重要)。通过包括网络安全性,基础架构,人工智能,数据,存储和计算需求,使内容全面。目前个别概念和它们的相互依存关系。

在解决方案实施之前强调问题评估和问题解决,建立新的智能技术项目时,请平衡聘请外部专家和内部人员来发展公司的数字灵活性。

挑战2:数据敏感性

27%的人认为“数据敏感度” 来自对数据和IP隐私,所有权和管理的日益关注。

例如,要成功实现AI算法,需要有训练和测试数据。这意味着必须共享数据,但是许多公司都不愿意与第三方解决方案开发人员共享数据。还强烈相信,我们当前在组织内部使用的数据治理策略不足以支持跨组织的数据共享。

相关文章

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注