使用Unity感知工具大批量生成 分析合成数据,有效地训练ML模型

合成数据可降低获取标注数据的难度,方便机器学习模型的训练。本文属于合成数据系列第二篇,我们将用一个对象检测的例子,来介绍Unity生成和分析合成数据集的各种工具。
 
在系列首篇文章中(点击回看),我们讨论了搜集大量标签图像、训练机器学习模型完成电脑视觉任务时遇到的各种挑战。还讨论了Google Cloud AI和OpenAI的最前沿研究,在物体检测等类似任务中使用合成数据的可行性。
 
然而,搜集合成数据、制作可用于训练的数据集是十分复杂的,一不小心就会有所疏漏。这导致开发者往往不得不编写一些一次性的方案来生成数据,然而这些数据的效果通常不理想。今天,我们为大家介绍两款全新工具:Unity Perception Package和Dataset Insight,它们可以删繁就简,让高质量合成数据集的生成和分析更为简单。
Unity Perception 功能包
Unity Perception 功能包捕捉到的RGB、2D包围盒以及其它度量信息
 
Unity Perception 功能包能够以全新的方式在Unity中合生成合成数据集,且同时支持通用渲染管线(URP)与高清渲染管线(HDRP)。在初版中,功能包带有捕捉数据集的工具,包含4种基本功能:添加对象标签、贴标器、图像捕捉和自定义度量衡。用户在功能包中输入对象标签的相关信息,接着功能包会自动挑选信息、将其反馈到贴标器中。贴标器使用该信息来生成Ground Truth真值数据,象是3D包围盒或语义分隔遮罩。经过处理的真值会与相关度量衡一起储存到JSON文件中。
 
我们计划在未来添加更多的贴标器,比如实例分隔,来支持其它常见的计算机视觉任务;场景生成工具;配置、管理大批domain randomization(域随机化)参数的功能,以及云服务的规模扩展。

dawei

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注