图灵奖得主Judea Pearl谈机器学习 不能仅靠数据

研究机器学习,既要数据拟合,也要能解释数据。
 
在当前的人工智能研究社区,以数据为中心的方法占据了绝对的主导地位,并且这类方法也确实成就非凡,为语音识别、计算机视觉和自然语言处理等重要任务都带来了突破性的进展。即便如此,也一直有研究者在思考这类方法的不足之处以及其它方法的重要价值。近日,图灵奖获得者、著名计算机科学家和哲学家 Judea Pearl 发布了一篇短论文,从便利性、透明度、可解释性三个角度谈了他对激进经验主义和机器学习研究的思考。
论文链接:https://ftp.cs.ucla.edu/pub/stat_ser/r502.pdf
 
在这篇论文中,Judea Pearl 将沿便利性、透明度和可解释性三个维度对比用于数据科学的「数据拟合(data fitting)」与「数据解释(data interpreting)」方法。「数据拟合」方法的信念源自研究者相信理性决策就隐藏在数据本身之中。相较而言,数据解释学派却并不将数据视为唯一的知识来源,而是一种用于解读现实的辅助手段这里的「现实」是指生成数据的过程。文章将在因果逻辑的指引下,探讨拟合与解释在任务方面的共生关系,以此让数据科学恢复平衡。
 
模拟进化与数据科学
 
我最近参加了一个讲座,演讲者这样总结了机器学习的哲学思想:「所有知识均源自所观察到的数据,有些直接来自感官经验,有些则来自通过文化或基因方式传递给我们的非直接经验。」

dawei

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注