深度学习带动了人工智能发展的新历程。2013 年 4 月,《麻省理工学院技术评论》杂志将深度学习列为 2013 年十大突破性技术之首。一大批初创公司乘着深度学习的风潮涌现,使得人工智能领域热闹非凡。现在,深度学习一时风光无两。但是,深度学习有没有它自己的局限性?它的未来会怎么样?
 
深度学习现在被用于翻译语言,预测蛋白质如何折叠,分析医学扫描,以及玩类似围棋的复杂游戏,这些仅仅是这种技术中一些应用,现在已经普及。上述及其他领域的成功,使得这一机器学习技术从 21 世纪初的默默无闻发展到今天的主导地位。
 
尽管深度学习的成名相对来说比较晚,但它的起源可并不晚。1958 年,当大型计算机挤满了房间,运行在真空管上时,康奈尔大学的 Frank Rosenblatt 受大脑神经元之间相互连接的知识启发,设计了第一个人工神经网络,他预见性地将其描述为一个“模式识别装置”。但 Rosenblatt 的雄心壮志超出了他那个时代的能力他知道这一点。甚至连他的就职论文也不得不承认神经网络对算力的渴望,他哀叹道:“随着网络中连接数量的增加……传统数字计算机的负担很快就会变得过重。”
 
幸运的是,对于这样的人工神经网络当它们包含额外的神经元层时,后来被重新命名为“深度学习”数十年来的摩尔定律,以及计算机硬件的其他改进,使得计算机在一秒钟内能完成的计算数量增加了大约 1000 万倍。所以当研究人员在 2000 年代末回到深度学习的时候,他们有了足够的工具来应对挑战。
 
这种功能更强大的计算机使构建更多连接和神经元的网络成为可能,从而提高了对复杂现象建模的能力。研究人员利用这种能力打破了一个又一个记录,将深度学习应用到新的任务中。

dawei

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注